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PRO BLEM STATEMENT 

in traditional bridge design, elementary beam theory has been 
su• cient to nredict both the deformations and the normal stress 
distributions resulting from the bending moment carried by the gird- 

•+ was appropriate to ut{•ize th= er. Using this elementary theory, 
basic assumption of beam theory• namely, that cross sections of the 
beam remain plane after bending. 

In the design of contemporary bridge structures, however, ir- 
regular cross sections and curved geometries are frequently encoun- 
tered. In such cases, certain of the more traditional and approximate 
methods of analysis may be incapable of accurately predicting the 

• Vn the presence of sig stress distribution throughout the structure. 
nificant shear stresses, caused either by torsion or by transverse 
loading on the bridge, cross sections may not remain plane and the 
basic assumption of beam theory may lead to results seriously in error. 
For certain geometries, such as those found in thin walled sections 
utilized in many box girder bridges, it is not unusual for longitu- 
dinal restraint in the presence of nonuniform torsion to contribute 
significantly to the normal stresses and corresponding deformation. 

The problem of reliably predicting, both normal and shearing 
stresses in the cross section of bridge girders is not new. Extensive 
research has been conducted in the past decade, with emphas{s on the 
determination of stress resultants such as bending moments, shearing 
forces, and torques at particular cross sections of the bridge girder, 
as well as the determinat'on of detailed stress distributions through- 
out the cross section once these overall stress resultants have been 
dezermined. (1,2) Shearing stresses and the acccmpanying change in 
normal stress distribution due to restrained warping have been 
studied extensively for the case of tors'onal loads, and both approxi- 
mate and more exact techniques for calculating such stresses have been 
developed. (3,4) 



However, the complexity of the problem has made it impossible 
to completely determine the effects of all parameters. In particu- 
lar, the effect of nonuniform shear on normal stresses and corres- 
ponding cross-sectional deformation cannot, at the present time, be 
reliably predicted. Nonuniform shear can occur either when the 
loading varies along the axis of the beam or when the warping of 
the cross section, caused by the shear at that location, is con- 
strained by the end conditions or mechanical devices. Current 
practice calls for these effects to simply be neglected; however, 
preliminary consideration has indicated that, in certain cases of 
cross-sectional geometry, these effects may be significant. 

There is, then, a need to study the effects of previously 
neglected parameters such as nonuniform shear on the deformation 
and stresses i• beams whose geometries are such that these effects 
may produce significant changes in the usual bending stresses. The 
results from such a study would provide a more accurate procedure 
for the stress analysis of thin walled cross sections and, more 
importantly, would identify for bridge designers the relative im- 
portance of these parameters. 

OBJECTIVES 

The broad objective of this study was to develop a theoretical 
background, based on an exact elasticity formulation, and a subse- 
quent numerical procedure for the general elastic stress analysis 
of straight beams of arbitrary cross section. Existing approxima- 
tions permit the stress analysis of beams under certain loading • conditions such as constant shear, uniform torsion, and nonuniform 
or restrained torsion. (2,3,4,5,6) Although the formulation is suf- 
ficiently general to include other types of loadings, the primary 
concern was the effect of nonun • _•orm shear on the normal stress 
distribution over the cross section. 

Specific objectives include the following" 

i. To formulate, using elasticity theory, a theoretical 
basis for subsequent numerical approximations with 
consideration given to all loading parameters, i.e., 
constant shear, uniform and nonuniform torsion, etc., 
but with primary emphasis given to the effects of 
nonuniform shear. 



2. To develop a general numerical method for the stress 
analysis of beams of arbitrary cross section that 
would include consideration of nonuniform shear and 
restrained warping, with emphasis given only to a 
finite element procedure to arrive at numerical ap- 
proximations. 

3. To demonstrate this method by calculating the normal 
and shearing stresses for beams having certain repre- 
sentative cross sections such as rectangular, circular, 
angle, channel, and box sections. 

4. To compare the stress results for certain cross sections 
with either the exact solutions or previously determined 
approximate solutions. The exact solution for nonuniform 
shear may be obtained for the rectangular and circular 
sections. 

5. To evaluate the effects of nonuniform shear on stresses 
and the stress distributions over the cross sections. 

SCOPE 

In the study, consideration was limited to prismatic beams 
having straight axes and subjected to arbitrary ioadings. The mate- 
rial of the beam was assumed to be homogeneous, although the method 
can be extended to consider composite action. Numerical results 
were limited to typical cross-sectional geometries such as open or 
closed box members currently used in the design of girder highway 
bridges. The feasibility of extending the procedure developed for 
the straight beam analysis to include curved beams was determined. 

DEVELOPMENT OF THEORY 

In the development of the theoretical background for the elastic 
stress analysis, it was assumed that the bending moment, shearing 
force, torque, bimoment, or other appropriate stress resultants at 
any specified location along the axis of. the beam are known. 

Conside• a beam o•_ arb{trary_ •oss•_ seot{on,_ loaded un{formi•J_ 
• along its axis with either body forces or surface tractions. •he 

forces which determine the magnitude of the uniform load may be of 
any distribution either on the periphery or in the cross section 
of the beam. Figure i depicts the coordinate system used with the 
x and y axes in the plane of the cross section of the beam and with 
the omigin at the centroid. Figure 2 depicts the forces or surface 
zract'ons wh'ch may be associated with the uniformly loaded beam. 
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Figure 2. Forces on the uniformly loaded beam. 



The following assumptions are made" 

The material is isotropic, 
and continuous. 

linear, homogeneous, 

The z axis is the centroidal axis, but the x and 
y axes are not necessarily principal axes. 

The beam is prismatic and the distribution of the 
uniform load over the cross section may be arbitrary. 
This work covers the cases of a uniform distribution 
of twisting couple and longitudinal force. Any re- 
sultant force or couple at any end of the beam is 
also considered. 

The stresses and strains may be expressed as a 
quadratic function of :he longitudinal coordinate z. 

Assumption (4) reduces the problem from a three-dimensional 
one to a two-dimensional or cross-sectional analysis and allows 
the stresses and strains to depend only upon the internal forces, 
couples, and other appropriate stress resultants at that cross 
section. 

Consistent with assumption 
be of the form" 

(4), the stresses are assumed to 
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Similarly, the strains are assumed to be given by 
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•n the equilibrium and compat•b•]l÷y equations, the boundary 
conditions, and the stress-strain laws, the terms of the second, 
first, and zero degrees °n z may be considered separately. 

The first step is to substitute eqq. !a-2f into the appropriate 
equilibrium and compatibility equations. Enforcing the boundary 
conditions, and taking terms that contain only z 

2, the following 
relations are derived" 

(2) 
--•IS 

(2) •(--S• + a x •- b y) (3b) 
z 2 2 

(2) 
a 

(•) 
r 

(e) (2) 0 (3a) ax y xy Yxy 
C 

Y Sz(e) sz aex bey (3c) 

a 
(2) Es (e) 

Z Z 

(e) Gy (z) GO (••x rxz 
xz z 

y) 
•¢ +x) 

• 
(e) Gyyz(•) GO.z(•_g 

yz 

(3d) 

(3e) 

(3f) 



where •(x,y) is St. Venant's torsion function, 
b 2 are constants with 

and 82, •2, a2, and 

Ve•(x,y) 0 in R (3g) 

•¢ y• xm on C (3h) 
•n 

In a similar fashion, if those terms containing only z are 
collected, the following expressions are derived" 

e xz xz yz ryz 
• 

(•) 
• 

(•) 
• 

(•) 
•. 

(•) 
x y xy xy 

(•)= • a•x b•v 

0 (4a) 

e 
(•)= 

e 
(•) 

-Ue 
(•) -•(• a•x b•y) 

x y z 

• 
(•) E• (•) 

Z Z 
E(e• a•x- b•y) 

Yyz 

+ 2be [•-•-+ •xy] 

ryz (•) Gyyz(• 
(•) Gy (•) TXZ 

XZ 

(4b) 

(4c) 

(4d) 

(4e) 

(4.f) 

(4g) 

(4h) 



where }(x,y) is the torsion function, •l(x•y) and •2 (x,y) are 
the warping functions in the x-z and y-z pmanes, respectively, 
due to shearing deformation, •I, al, bl, and 8! are constants, 
and with 

and 
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Finally, by selecting terms independent of z, the foi!ow'ng 
expressions are derived" 
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Using eqq. la-!f, 2a-2f, 3a-3f, 4a-4h, and 5a-5m, the final 
complete expressions for stresses a•d strains are as follows" 
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where go s•, ao, a:, ao, bo, bz, bo, 0,• and are consqanrs. 



The evaluation of the constants in terms of applied loading 
and boundary conditions, and the interpretation of these constants, 
are derived elsewhere. (7) 

DEVELOPMENT OF THE FINITE ELEMENT METHODOLOGY 

Finite Element Theory 

In this section, a procedure using the finite element method 
for approximately solving the equations developed in the previous 
section is nresented. 

The unknown functions to be determined using the finite ele- 
ment method are the warping functions •(x•,y), •](x,y•), •2(x,y), and 
?3(x,y) and the displacement functions u•(•x.y) • •(nd v x,y.) An 
alternate way of representing the equations and boundary condition•. 

• coverning these function= is to _•ind their eeuivalent variatmona! 
forms which, when minimized with respect to the unknown functions, 
wil 

_. 
yield the governing different{al equat{ons and boundary condi- 

tions. These functionals, which are •erlved in reference (7), are 
designated i•, I%,i, !•2, i•3, and ! 0. 

The finite element solution is obtained by varying the nodal 
values of the unknown variables so as to minimize the equivalent 
variational functional. Thus, setting the partial derivatives of 
the functional with respect to each of the unknown nodal variables 
equal to zero produces a set of algebraic equations. These equations 
can then be solved for the nodal values of the variables. 

For the uniformly loaded beam, the cross section is approxi- 
mated by a system of arbitrarily shaped triangular elements. The 
unknown variables are assumed to vary linearly within each element 
Figure 3 depicts a typical finite element idealization of a beam 
cross section and Figure 4 represents a typical m 

th element with 
its nodes numbered as shown in its local numbering system. 

By letting y(x,y) represent any one of the unknown variables, 
•(x,y), •!(x,y) •2(x,y), •3(x,y), u0(x,y), 

or 
v0(x,y), the values 

of the unknown •unction 
at the nodes !, 2, and 3 are denoted re- 

spect{rely by yl m m m Y2 and Y3 

The unknown variable may be expressed as a linear function 
w{thin element m as 

m m 
y (x,y) C I + C x + C y, (7) 

12 



X 

Figure 3. Finite element idealization 
of the beam cross section. 
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2 

Figure 4. Typical •riangular element. 



•here the constants C•, and. C can be determined in terms of 
the values of y at th node polnts. These can be written in a 
simplified form using the summation convention as 

m cm. T m. y j 1,2,3, 
•_ •.j j (8) 

where a repeated subscript implies summation. In eq. (8), 

x•ya x•y• xay• x•ya xlY 
2 

xey• 

Ye Y• Ya Y• Y• Ye 

X X 2 X X• ,X 2 X 

and A m the area of element m. 

Using eq. (8) and utilizing the summation convention, eq. (7) 
can be written in terms Of the values of the unknown variable at 
the nodes of the element as 

m ¥ (x,y) cm.x T m. mY 
•. i •_j Yj •i j 1,2,3, (i0) 

where 

X i [I x y]. (I!) 

The derivatives of 7(x,y) with respect to x and y may also be 
expressed in terms of the values of the unknown variable at the 
nodes of the elemen• as 

15 



•ym(x,y) 
T m m 

•x 2.jYj j 1,2,3 (12) 

rn 9y (x,y) 
T m m 

•Y 3JYJ j 1,2,3, (18) 

For area integrations of a triangular element, let 
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1,2,3, (17) 
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War•pin•g Function Formulations 

warping Function ¢(.•,Y.,)• 
The energy functional to be minimized is 

• -•ff[(-• y)• ÷ (• ÷ x) ]dxdy. (18) 

Using the notation as given by eqq. (i0)-(13) •, 

eq. (18). may be expressed by 

M 
• ff[(Toj *j y) I• 

m=! Am 
m m + (T3j •j + x)•]dxdy, 

(19) 

where M the total number of elements in the cross section. 

Following the usual Ritz procedure, the minimization of the 
functional with respect to the unknown warping function }n leads 
to the following system of equations. 

Q Q 
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T. m T m. 
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node n 
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]7 



Q is the number of elements which surround node n, L is the 
total number of node points defining the shape of the cross 

m section, and lij is given by eq. (i•). 

Eq. (20a) can be solved for the values of the warping func- 
tion • at the node points. 

This formulation for the torsional warping function •(x,y) 
is identical to that given previously by Herrman (6) and by Pilkey. (8) 

Warping Function •I (x'y) 

The energy functional to be minimized is 

+ 4(1+'•) x•.• (x,y)}dxdy. (21) 

Using the notation as given by eqq. 
be expressed by 

(i0)-(13), eq. (21) may 
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where H the total number of elements in the cross sect'on. 

Minimizing the energy of the system wi•h respect to the unknown 
warping function %].n yields 

Q m Q 
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where 

S 
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m m T T in i• 

Q is the number of elements which surround node n, L is the total 
number of node points, and !i• is given by eq. (16). 

Eq. (23a) may be solved for the values of the warping function 
at the node points. 

Warping Function •92(x,y) 

The energy functional to be minimized is given by 
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where M the total number of elements in the cross section. 

Again, minimizing the energy of the system leads to the follow- 
ing set of linear equations. 
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J 

is given by eq. (16) 

Eq. (26a) may be solved for the values of the warping function 
•2 at the node points. 

Warping Function •.,3 (x,y) 

The energy functional to be minimized is given by 
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which may be written as 
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where M the total number of elements in the cross section and 
Mi = the total number of elements forming the boundary of the 
cross section. 

Minimizing the energy of the system leads to the following 
set of linear equations. 

Q Q 
Z • m m= I • 

m= I nj • •j m=l n 

1,2,3,...L 
1,2,3, (29a) 

where 

m m m m m m m Snj [T2j T2n + T3j T3n]lll --¢b•123 T2n 

1 m m m •-•b•_(133 122)T3n (29b) 



R o i m m+ I m m -,_(l+;)b• 3i Tin 
n 

•(E• + Z)lli T. 

T 
+ Llj 

Tm- T m 
in ij' j 1,2, or 3, the node number in 

element m which corresponds to 

(29c). 

node n, (29d) 

Q is the number of elements which surround node n, L is the total 
m is iven b e and L mis given number of node points, !ij g y q. (16), ij 

is by eq. (17). Only when node n lies on the boundary and -,. specified as a non•rivial value will the last integral in eq. (29c, 
contribute to eq. (29a). 

D.is:piacement Functions u0(x,y) and v0(x,y) 
The energy functional to be minimized is given by 

(o) + • 
(o) + e 

(o))e + 2G(e 
x 

Ix 
y z 

+ e 
(o)•) + Gy (o)2] (• (I) _• •)U 

y xy xz 

(r (•) + ?)v °}dxdy Fc(T u + T v °)ds yz x y 

(30) 

where 

(o) •___u 
•x •x 

a 
(o) •v 

Y 

y 
•u •v 

xy Sy •x 

(31a) 

(3ib) 

(31c) 
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Using eqq. (31a)-(31c), the notation as given by 
(13), and dropping the superscript 0 

on 
u0(x,y) and v 

(30) may be expressed by 

eqq. (,10)- 0(x,y) eq 

M 
Zo Z 

ff{•k(T m m + T m x•. + • 

m= 1 • 2j uj 3j • 
(o))e 

Z 

m um.)2 + (T m v•)2 • m m + T m vm.] + G[(T2j 
• 3j + [T3j uj 2j • 

m m (•) (r (•) + •)xiTij u. (r 
xz 3 yz 

+ •)xiT. m. v.m}dxdy 

M1 
l f IT X.T.m. u• + T 

• 
•" T m 

v 
m.]ds 

m= I S m x • •3 3 y i ij 3 (32) 

where M the total number of elements in the cross section and 
MI the total number of elements forming the boundary of the cross 
section. 

By minimizing the energy of the system with respect to the un- 
known displacement functions-u m and v m, 

-the-fol!owi•g•Set of linear 
equations are derived for u and v, respectively. 

O 
m m m .m I ff •X(T2j u. + T vj + • 

m=l ^,m 3 3j 
m (0) )T 

z 2n 

m m urn. + G(T m m + T m v•) m + 2G T2j T2n 
• 3j uj 2j T3n 

Q 
m rods 0 (rxz ( + •) XiTin } dxdy I f TxX iTin 

m=l S m 

(33a) 
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Q 
m urn. + T m v•. + • ff{• (r2j 

2 3j 2 m=l A m 
m 

z 

(°))T3n 

rn m m T m m• rn + 2G r3j r3nv. + G( u. m + r )r 
j 3j j 2j 2n 

Q 
(r (•) +-[)XiT dxdy E fT X T m 

yz in 
} 

m= I my i in ds 0. 

S (33b) 

Performing the above element integrations and using eqq. (16) 
and (17), eqq. (33a)-(33b) yield the following system of 2L linear 
simultaneous equations. 

Q Q 
• [K]m{•}m • {p}m 

n= 1,2,3 
m=l m=l j 1,2,3, 

L 
(34a) 

where 

{A} m 

{p}m 

v 
m. 

m 

Ii 2 [K]m m 

m m 
Iii 

kll k22 

j 1,2,3, (34b) 

(34c) 

(34d) 
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where 

m kll (k m m m m + 2G)To T + G(T T ) •j 2n 3j 3n (34e) 

m m m m m+G T2 T k12- XT3j T2n j 3n 
(34f) 

m m Tm mTm k21 lT3n 2j + G T2n 3j 
(34g) 

(• m m  m m+G T T 2 + 2G)T3• 
= 

Tono 2j 2n (34h) 

PI -XT2n Sz m im (•)X dxd_v (O)dxdy + Tin f, •xz i 

mTm + X!li in 
m .• T T. L 

x •n li (34i) 

m m /im (o)dxdy P2 -kT3n •z 

+ T m ffAm 
In 

mTm (1)X.dxdy + Ylli in yz 
m +T T. L 

v •n li 

(34j) 

T•. T m 

•n ij' j I, 2, or 3, the node number in 

element m which corresponds to node n, (34k) 

Q is the number of elements which surround node n, L is the total 
m is given by eq. (i6), and Lij •s given number of node points, lij 

by eq. (17). 

Boundar$• Conditions 

The stiffness matrices for the warping functions and displace- 
ment functions given by eqq. (20a), (23a), (26a), (29a), and (34a) 
are singular and the corresponding equations cannot be solved 
uniquely. To overcome this difficulty, certain boundary conditions 
must be applied by selecting an a•bitrarv. node and spec'•v•g•._• the 



values of }(x,y), •l-(x,y), •2(x,y), and •3(x,y) at that node. 
Since the stmesses fmom these functions w•ll not be affected by 
the specified values of the warpin• functions• the values of 
}(x•y) = •l(x•y) = 

•2(x•y) = 
•S(x•y) 

= 0 aZ the selected node ame 
acceptable. 

For the displacement functions u 
0(x,y) and v 

0(x,y), it is 
necessary to zero three displacements to prevent rigid body motion. 
Since the cross section, theoretically, is in equilibrium under the 
forces given by eq. (34c), the stresses derived from the displacement 
functions will not be affected by the constraints chosen. 

The displacement functions u0(x,y) and v0(x,y) will provide a 
mapping of the cross-sectional distortion created by the applied 
forces on the cross section. Therefore, in order to obtain a sketch 
of the cross-sectional distortion, it is conven'ent to constrain an 
interior element near the shear center so the boundary of the cros[ 
section is the least affected. If the shear center is outside the. 
cross section, an interior element near the centroid may be con- 
strained. 

APPLICATIONS AND NUMERICAL EXAMPLES 

The stresses considered in this study include those due to 
constant torsion, direct shear, bending moment, axial force, non- 
uniform torsion, and nonuniform shear. The stresses due to non- 
uniform torsion and shear require the determination of warping 
functions which are determined approximately using a finite element 
analysis. 

A finite element computer program has been prepared to deter- 
mine these warping functions. Input loading parameters include the 
magnitudes of the axi•l• force, bendin•o moment, tw•sting• moment, an• 
the rates of change of twisting moment and shear. Rates of change 
of twisting moment or shear may be input either as body forces or 

as surface tractions in "•hich case the surface traction connect'v'mp 
on the outer boundary of the cross section must be specified. 

In this section, several examples are presented to demonstrat• 
the applicability of this methodology. Ccmpar'sons of the finite 
element solutions with •he exac• or approximate solutions for certain 
cross sections will also be given to demonstrate the accuracy of the 
former. Emphasis is given to those stresses resul•ing from nonuni- 
form shear. 

This computer program was developed as a research tool and is 
not suitable for general use at this time. Those interested in the 
details of the program may contact the authors. 



R•c•an•ular Sect ion 

Consider a homogeneous beam of a rectangular solid cross 
section in which the material has a modulus of elasticity of 
199,950 MPa (29,000,000 psi) and a Poisson's ratio of 0.27. 
The beam is subjected to a uniform load of 17.5 kN/m (!00 lb./in.) 
uniformly distributed on the upper surface of the beam as a sur- 
face traction of 68.95 kPa (I0 psi). The dimensions and the 
• 
inite element model of the beam cross section, including the 

loading, are depicted in Figure 5. The resultant shearing force 
on the cross section to be analyzed is 4,448 • (i,000 lb.) in the 
positive y direction. 

An approximate generalized plane stress solution to this problem 
has been presented by Love (9) in which the average of the normal 
stress i• the• x direction is taken to be zero. Comparisons of stresses 
from the generalized plane stress solution and the finite element model 
are given in Table i. For a constant valu• of y, the average of the 
s•resses in a row of elements is tabulated as the finite eleme•t 
solution. These stresses are graphically depicted in Figures 6-8, 
with small triangles denoting the approximate average finite element 
solutions. The comparisons of stresses as depicted in the table and 
graphs show good agreement for both the shearing stress and the 
normal stresses. 

To determine the u and v displacements, boundary conditions 
must be imposed as discussed earlier. In this example, the centroid 
was fixed against displacement and ro_tation. Figure 9 depicts .•the 
cross-sectional distortion of the beam cross section due to three 
loading conditions. The values of the nodal displacements may be 
found from formulae derived by several authors(9,10,11,12) arid have 
the magnitudes of _+88.68 x 10 -6 

mm (+3_ .4•138• x •0-6in.) and +66.51 
x 10-6mm (+_ 2.61853 x 10 -6 in.) for u and v, respectively. 

Displacements from the finite element formulation give corresponding 
values of _+86,89 

x 10-6mm (+3_ .42099 x 10 -6 in.) and +66_ .09 x 
10-6m•m 

(+ 2.60178 x 10 -6 in.), which differ by only 2.0% and 0.6% from the 
exact solutions. Thus, it may be concluded that this methodology 
quite accurately predicts the cross-sectional distortion of the 
rectangular section under pure bending. 
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20 in. 

T I0 psi 
Y 

I0 in. 

i in. = 25.4 m.m 

i psi- 6.89 kPa 

Figure 5. Solid r.ectangular section subjected to a uniformly 
distributed surface traction of i0 psi. 
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Finite element solutions in psi 

/ 

TRU YZ 

i psi 

÷I O0 • 

25.4 • 
6.89 kPa 

Figure 6. Shear stress 

rectangular 
(rvz) distribution in a 

section. 
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A Finite element solutions in psi 

"i 
N •0• O0 •. O0 2. O0 3. O0 q. O0 10. O0 

• i in. : 25.4 
! psi- 6.89 kFa 

• gure 7 Normal stress (•y) distribution in a 

rectangular section. 
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A Finite element solutions 
in psi 

I in. 25,4 
i psi 6.89 kPa 

2. O0 2.50 

Figure Normal stress (c_) distribution in a 

rectangular section. 
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Deformed Section 

P 0 
Y 

M -50,000 in-lb 

i00 !b/in 

50,000 in-lb 

i ib/in i75.13 N/m 
i in-ib 0.ii3 N-m 

Figure 9, The cross-sectional distortion of a Solid 
r.ectangular section due to three •ifferent 
loading conditions. 



Circu!ar Section 

Next, consider a homogeneous beam with a solid circular cross 
section in which the material has a modulus of elasticity of 
199,950 MPa (29,000,000 psi) and a Poisson's ratio of 0.27. Figure 
i0 depicts the finite element idealization with the circular bound•<yy 
of the cross section modeled as a series of straight lines. 

The beam is loaded by a shearing force in the x direction of 
444.82 N (i00 lb.) and a body force of 0.273 x 10 -3 N/mm3 (i lb./in. 
in the x direction. The exact solution for this problem is given by Love(9) and comparisons of exact and finite element stresses for a 
quarter of the cross section are presented in Tables 2 and 3. These 
tables illustrate that the normal stresses from the finite element 
model compare reasonably well with the exact solutions while the 
finite element shearing stresses compare very well with the exact 
ones. 

To obtain displacements, nodes 26 and 44 were restrained in the 
x direction while node 35 was restrained in the y direction. The 
resuTting distortion of the cross section is shown in Fi•,•= !! 

68 

65 69 

R loin. 
(i in. 25.4 

39 

30 

Figure i0. The fin{re element representat'on of a 
sol'd ci•cu •_ •_ar •ec÷ion.._ 
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Figure !I. The cross-sectional distortion of a solid 
circular section due to_anx body force of 
I lb./in. 3 

i 
!b/in3- 

0.273 x 10 -3 N/m•3 
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Zee Section 

To demonstrate that the numerical procedure described in 
this study is equivalent to previous studies which consider only 
nonuniform torsion, a zee section, depicted in Figure 12, was 
analyzed. This section is identical to the one studied by Perrone• 
and Pilkey. (13) The beam has a modulus of elasticity of 199,950 MPa 
(29,000,000 psi) and a Poisson's ratio of 0.27 and is subjected to 
a bimoment of -686.04 N.m 2 (-239,055 lb.-in.2). 

Since input into the present finite element formulation con- 
siders only the rate of change of twisting moment, some modificati• 
must be made to consider bimoments due to restrained torsion, it 
may be shown(7) that 

z E• '' •¢ (35) 

where 

,, 
i 

• G-• f• (36) 

Since the term o ,= interest is •'' eq. (35) may be solved for 
•.'' in terms of the bimomenr and substituted in eq. (36) to give 
the rate of change of twisting moment or the twisting moment per unit 
length about the shear center in terms of the bimoment. 

JB¢ 
S 2(1+1•)t , (37) 

It should be emphasized that eq. (37) gives the twisting moment 
•.er un'* length about the shear center while the fin•e elemen* 
formulation considers only twisting moments about the centroid. ±• 
.-Re 
...... 

shear center and cent-•o•d do nc ÷ coincide, t•e•., n the rw_s• ring 
moment per unit length g'ven by eq. (37) must be computed abcut the 
centroid by statics. 
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T 
= 

68,7244 PSI 
Y 

! psi 6.89 kPa 

Figure 12. Surface tractions on a zee section 
corresponding 2o a bimoment •'orce 
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Using the values •iven by Perrone and Pi!ke• of J 327.35 x 103 •.•un4(78.64583 
x I0- in 4) and •= 41.32 x !0 (153.8617 in.6), 

eq. (37) gives a value of •q 2140 N.m/m. (481.07 in.-ib./in.). 
Table 4 gives the values of the normal stress due to restrained 
torsion on •he upper flange of the zee section, which are identical 
to the results obtained by Perrone and Pilkey. These normal s•res•os 
do not contain the contribution due to the plane strain solution. 
To obtain the plane strain solution, it is necessary to induce sur- 
face tractions on the cross section that will produce a twisting 
moment per unit length about the centroid corresponding to •. The 
manner in which these surface tractions are applied is completely 
arbitrary and, in this case, a surface traction of 473.84 kPa 
(68.7244 psi) in the y direction distributed uniformly as depicted 
in Figure 12 will give a twisting moment per u•it length of 2140 n.-m/m 
(481.07 in.-ib./in.) about the cen•roid of the section. 

Table 5 gives the additional normal stresses on the upper flange 
due to the plane strain problem. These additional s•resses are s i• 
nificantly smaller in compar'son •o those due to restrained torsion 
and may be neglected. However, the plane strain solution will give 
the cross-sectional distortion of the cross section as denicted in 
Figure 13. For •he plane strain solution, node 25 was pinned and 
node 32 was restrained in the y direction. 

This example demonstrates that the finite element method will 
give equivalent results to other formulations for restrained torsion. 

TABLE 4 

Normal Stresses on a 
Zee Section 

Due to Restrained Torsion 

Element 
Number 

•z (psi) 

-i. 48896E+04 

-i. 19764E+04 

-9. 06325E+03 

7 

-6. 15006E+03 

-3. 23688E+03 

-3. 23688E+02 

2. 58950E+03 

5. 43795E+03 

i ps" 6.89 kPa 
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TABLE 5 

The Additional Normal Stress 
on a Zee Section Due to 

the Plane Strain Solution 

Element 
Number 

I 

(psi) 

-10.45 

13.24. 

11.13 

12.18 

16.83 

-11.05 

176.90 

-165.80 

i psi : 6.89 kPa 



FiguPe i3. The cross-sectional distortion 
of a zee section. 
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Box Section 

Consider a homogeneous beam of a thin walled box cross 
section that has a modulus of elasticity of 199,950 MPa 
(29,000,000 psi) and a Poisson's ratio of 0.27. Figure 14 
depicts the dimensions and the finite element idealization of the 
cross section. Loading on the box section consists of a rate of 
change of shear in the y direction of 17,512.7 N/m (i00 lb./in.) 
uniformly distributed on the upper surface of the section as a 
surface traction of 68.95 kPa. Since the surface tractions are 
symmetrical with respect to the centroid of the section, there 
are no induced stresses due to nonuniform torsion. 

A plot of the normal stress induced by the nonuniform shear 
"s shown in Figure 15, which shows that the upper corners of the 
box are more highly stressed than the remainder of the cross 
section. 

The plane strain solution can again be used to obtain the 
cross-sectional distortion of the cross section to within a rigid 
bodv• mode. A plot of the cross-sect{onal_ distortion <or the case 
where node 5 is pinned and node 14 restrained in the x direction is 
depicted in Figure 16. The choice of the boundary condition in de- 
termining the u and v displacements has no effect on the derived 
stresses. 

2• 

Figure 14. Dimensions and the finite element represent_at'on 
of a rectangular box section. 



-251 psi 

-251 psi -251 psi 

-251 psi 

Figure i 5. The normal stress (•z) distribution in .a 

•ox sect;on due •o nonun_•_orm shear. 
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Figure 16. The cross-sectional distortion 
of a box section. 



Channel Section 

Consider a homogeneous beam consisting of a thin walled channel 
section which has a modulus of elasticity of 199,950 MPa (29,000,000 
psi) and a Poisson's ratio of 0.27. Figure 17 depicts the dimensions 
arid the finite element idealization of the cross section. Loading• 
on the channel section consists of a rate of change of shear in the 
y direction of 17,512.7 N/m (i00 lb./in.) uniformly distributed on 
the upper flange of the channel as a surface traction of 172.37 kPa 
(25 psi). Since the surface tractions are not symmetrical with 
respect to the centroid, there will be a rate of change of twistin• 
moment about the centroi.d of -363.27 N-m/m (-81.667 in.-ib./in.) 
that will induce nonuniform torsional stresses. 

Figure 18 is a plot of the longitudinal normal stresses induced 
on the channel section by the system of forces just described. It 
is interesting to note that +he normal s ._resses through the flanges 
vary in a nearly linear fashion. The dashes in the plot near the 
ends of ;the flanges indicate no available data at those end points 
and thaz extrapolation was used. 

To obtain the cross-sectional distortion of the cross section, 
node 40 in Figure 17 was pinned and the vertical displacement of node 
25 was restrained. The resulting distortion of the channel sectior• 
is shown by Figure 19. 
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16 17 
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18 

19 

35 

22 

23 

41 

43 

44 

4S 

in. 

X 

Figure 17. Dimension• and the finite =lem=n• representat on 
of a channel sect'cn. 
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-8054 psi 

5250 psi 

5250 psi 

7988 psi 

-5365 psi 
1 psi- 6.89 kPa 

Figure 18. 

-5365 psi 

The normal stress (•$) distribution in • channel 
section due to nonunm, orme she•r and torsion. 
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Figure 19. The cross- sectional distortion 
of a channel section. 
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DISCUSSION OF RESULTS 

The finite element stresses compared extremely well with the 
generalized plane stress solution for the rectangular section. 
Considering that the boundary of the solid circular section was 
approximated by a series of straight-line segments, these finite 
element stresses also compared very favorably with the exact ones. 

The zee section problem demonstrated that this methodology yields 
equivalent results to other formulations whenever nonuniform torsion 
is considered. 

The box section problem demonstrated that the plane strain 
solution yields the cross-sectional distortion within a rigid body 
mode. Both the box and the channel section problems indicate the 
application of the present formulation to common bridge cross 
sections. 

SU_MN.ARY AND CONCLUS•0NS• 

Summary 

The theoretical background, formulation, and methodology were 

developed for the elastic stress analysis of general prismatic beams. 
The applied forces included axial force, bending moment, uniform 
torsion, constant shear, and the rates of change of twisting moment, 
axial force, and shear. By making certain assumptions, the formula- 
rion expressed in terms of displacement functions was reduced from a 
three-dimensional analysis to a two-dimensional one. Numerical 
lutions were obtained using the finite element method, and the results 

were compared with either the exact or approximate solutions for 
beams having certain cross-sectional shapes. The solutions to sev- 

eral problems having commonly used bridge cross-sectional shapes 
were given to demonstrate the applicability of this methodology. 

Conclusions 

The comparisons between the numer'cal solutions obtained by the 
finite element analysis and the exact solutions for beams of certain 
cross sections agreed favorably and tended to validate the relia- 
•m!iry or :he solution techn que used The ability to analyze bea 
having com•.only used bridge shapes demonstrated the applicability of 
this method. 

Whenever the stress resultants are known, the formulations 
derived in this study would enable a designer to determine more ac- 

curately than conventional methods of analyses the stresses on a 



particular cross section of a bridge. Since designers draw shear, 
moment, torque, thrust, and loading diagrams for a bridge, the 
•articu!ar stress resultants emphasized in this study the •rates 
of change of torque, shear, and axial force may be determined 
simply by taking the slopes of the these diagrams at a particular 
section along the bridge. 

It is difficult to determine under what conditions the normal 
stresses resulting from nonuniform shear or torsion may be significant 
in comparison to bending stresses. This difficulty may be attributed 
to the fact that the normal stresses due to bending are functions of 
only the moments while the stresses obtained from nonuniform shear 
and torsion are functions of entirely different functions (rates of 
change of shear and torsion). 

In addition To obtaining stresses, the method developed in this 
study predicts the cross-sectional distortion of a beam to within a rigid body mode. The in-plane displacements obtained from the finite 
element analysis for a solid rectangular sect'on under pure bending 
compared • _avorab!y with exact solutions. 

Results from this study should= provide des'gners w't ,• valuable 
information regarding additional normal stresses imposed by non- 
uniform loading and the deformed shape of beam cross sections. 
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